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A numerical study of vortex shedding from rectangles 
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The purpose of this paper is to present numerical solutions for two-dimensional 
time-dependent flow about rectangles in infinite domains. The numerical method 
utilizes third-order upwind differencing for convection and a Leith type of temporal 
differencing. An attempted use of a lower-order scheme and its inadequacies are also 
described. The Reynolds-number regime investigated is from 100 to 2800. Other 
parameters that are varied are upstream velocity profile, angle of attack, and rectangle 
dimensions. The initiation and subsequent development of the vortex-shedding 
phenomenon is investigated. Passive marker particles provide an exceptional visuali- 
zation of the evolution of the vortices both during and after they are shed. The pro- 
perties of these vortices are found to be strongly dependent on Reynolds number, as 
are lift, drag, and Strouhal number. Computed Strouhal numbers compare well with 
those obtained from a wind-tunnel test for Reynolds numbers below 1000. 

1. Introduction 
The subject of bluff-body flows has recently been receiving a great deal of attention 

(e.g. Mair & Maull 1971; Naudascher 1974; Sovran, Morel & Mason 1978; Simiu & 
Scanlan 1978; Bearman 1980; Bearman & Graham 1980). This is largely because of 
its importance for energy conservation. For instance, road vehicles must now meet 
stringent fuel-consumption requirements which translate into a need for reduced 
aerodynamic drag. Large structures such as skyscrapers must be designed so as to 
minimize convective heat loss. In  addition, large structures must also be designed so 
as to avoid potentially disastrous wind-induced large-amplitude oscillations. This, of 
course, requires knowledge of the vortex-shedding characteristics of various structural 
shapes. Knowledge of vortex-shedding characteristics is also crucial in the design of 
the vortex-shedding flowmeter for measuring flow rates inside closed conduits. A 
well-designed flowmeter will show flow rate directly proportional to shedding fre- 
quency over a wide range of Reynolds numbers. Finally, it  is noted that vortex 
ehedding is also an important phenomenon occurring when airfoils or plates are 
inclined at suitably high angles of attack (Lugt & Haussling 1974; Mehta & Lavan 
1975; Kinney 1975). 

In spite of the importance of bluff-body flows, relatively little is known about them. 
The vortex-shedding characteristics of even the simplest of bodies (e.g. circular and 
rectangular cylinders) are not well understood (Mair & Maull 1971). A number of 
numerical and experimental studies of shedding from circular cylinders have been 
done (Mair & Maull 1971; Bearman & Graham 1980; Chorin 1973; Swanson & Spauld- 
ing 1978; Thoman & Szewczyk 1969). Much less is known about rectangular cylinders. 
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Some experimental studies have been conducted at  high Reynolds numbers (Vickery 
1966; Wilkinson, Chaplin & Shaw 1974; Lee 1975; Rockwell 1977)) and an early 
computer simulation at  low Reynolds number was reported by Fromm & Harlow 
(1963). This simulation, although a major achievement at  the time, was flawed by the 
use of central differencing at  large cell Reynolds numbers. This led to the now 
familiar spatial oscillations ahead of the rectangle. 

There has recently been much interest in vortex shedding at fairly low Reynolds 
numbers since the phenomenon can then be studied without the complications intro- 
duced by turbulence (Bearman & Graham 1980). The purpose of the present paper is 
to present numerical solutions for two-dimensional flow about rectangles in infinite 
domains at Reynolds numbers between 100 and 2800. Effects of variations in rectangle 
dimensions, angle of attack, and upstream velocity profile are investigated. The onset 
and subsequent development of the vortex-shedding phenomenon is visualized 
through the use of passive marker particles. Good agreement is found between the 
computed shedding frequency and that obtained by a wind-tunnel test for Reynolds 
numbers less than 1000. 

The numerical method used in this flow simulation is of special interest. It is a 
multi-dimensional version of the one-dimensional QUICKEST scheme recently pro- 
posed by Leonard (1979). This scheme utilizes an explicit, Leith type of time differen- 
cing (Roache 1976) and third-order upwinding on the convective terms, although, 
because of standard centred diffusion differencing, it is overall second-order accurate 
spatially for non-zero kinematic viscosity v. In the limit v-+ 0, the one-dimensional 
QUICKEST method is third-order accurate temporally. The use of third-order upwind 
differencing for convection greatly reduces the numerical diffusion associated with 
first-order upwinding (Roache 1976). This is illustrated in a recent paper by Baum et al. 
(1981). It is shown in this paper that the QUICKEST scheme can accurately model the 
motion of a moving shear layer in a swirling axisymmetric flow up to Reynolds 
numbers of a few thousand without an undue number of grid points. In  contrast, the 
use of first-order upwinding on this problem resulted in excessive smearing of the 
shear layer, while central differencing was also clearly inferior to QUICKEST. In  fact 
prior to adapting QUICKEST to the modelling of the flow around rectangles, the simula- 
tion was attempted with the convective terms modelled by a weighted average of 
upwind and central differencing (Hirt, Nichols & Romero 1975). Each of these methods 
by itself would have been unsatisfactory: upwinding because of excessive numerical 
diffusion and central because of its restrictive cell-Reynolds-number limit (Roache 
1976). It was hoped that a suitable mix of the two would provide satisfactory results. 
However, it was found that the results of the simulation were strongly dependent on 
the weighting factor, and thus it was decided to utilize the higher-order QUICKEST 

scheme. 
The major difficulties associated wit'h the use of the QUICKEST scheme in multi- 

dimensions are in the application of boundary conditions. Section 2 describes t'he 
method as applied in two dimensions. More detail is also provided on the attempted 
use of a mix of upwind and central differencing to model the vortex-shedding 
phenomenon. 
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FIGURE 1. Configuration definition. 

2. Numerical modelling 

viscous fluid are 
The two-dimensional Navier-Stokes and continuity equations for an incompressible 

( 1 )  

v . q  = 0. (2)  

aq/at + (q . v)  q = - vp + m q ,  

Here q = (u ,v) ,  where u and v are velocity components in the x- and y-directions, 
respectively, in a Cartesian reference frame, p is the ratio of pressure to  constant 
density, v is kinematic viscosity, and t is time. The particular problem for which a 
solution of (1) and (2) is required is that of flow around a rectangle in an infinite 
domain. The rectangle has length a and width b, and the magnitude of the arbitrary 
upstream velocity profile U(y) a t  x = y = 0 is U,, as shown in figure 1 .  The initial and 
boundary conditions for ( 1 )  and (2) are as follows: 

at t = 0 ;  

for t  > 0 

q = U(y) 

q = 0 

everywhere outside the rectangle 

on the surface of the rectangle, 

q+U(y) as 1x1 = I(X-X,,y)I-tOo. 

The initial condition is equivalent to  an impulsive start. I n  figure 1 ,  a: is the angle of 
attack, and xR, which is the distance from the inlet to the computational domain to  
the upwind face of the rectangle, is large enough so that the flow at  x = 0 is essentially 
undisturbed. The Reynolds number for this flow is defined as R = U,b/v. Henceforth, 
all lengths are non-dimensionalized with respect to  b, all velocities with respect to  
U,, time with respect to  b/U,, and p with respect to  U;.  Thus, in figure 1,  b = U, = 1 
by definition. Then the lift coefficient C,  for the rectangle is simply twice the non- 
dimensional lift force and similarly for the drag coefficient, C i .  The Strouhal number 
is S = fb/U,, = f, where f is the shedding frequency, and the pressure coefficient C, is 2p. 

16-2 
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The numerical solution of (1)  and (2) is accomplished on a variably spaced staggered 
mesh in which pressures are defined a t  cell centres and normal velocities a t  cell faces. 
The variable spacing is such that the mesh spacings in the x- and y-directions, Ax and 
Ay, are only functions of x and y, respectively. Mesh cells are concentrated in the area 
near the rectangle. Equation (1) is put in conservation form (Roache 1976) and finite- 
differenced, the particular form of finite differencing being the subject of the following 
discussion. 

As noted in $1, the initial attempts a t  a numerical solution of ( 1 )  and (2) utilized a 
weighted average of upwind and central differencing to model the convective terms 
in ( 1 )  (Hirt et al. 1975). Explicit forward time differencing was used for the time 
derivative. If the convective term to be modelled were, for instance, u # ~ ,  where u is 
a positive constant, then the finite-difference formulation would be 

where i is the mesh index in the x-direction and 0 < < 1, where /3 is the weighting 
factor. The numerical diffusion coefficient associated with this formulation is BPuAx. 
It can be shown that the cell-Reynolds-number condition for (3),  when differenced 
in conjunction with central second differencing of a diffusion term, is 

R, U A X / V  < 2( 1 -/?)-I. 

Thus, for large p, excessive numerical diffusion occurs, while, for small P, spatial 
oscillations in the solution are possible unless the severe cell-Reynolds-number 
restriction is obeyed. 

A range of p was tested in an effort to model the vortex shedding from a square 
( a  = 1) at  zero angle of attack and a Reynolds number of 250 with a uniform upstream 
flow profile (IU(y)l = 1). The Strouhal number was calculated for various values of ,4 
in the range 0.20 < p < 0.60. As p increased within this range, S decreased mono- 
tonically by about one-third. For /3 < 0-30, spatial oscillations in u appeared upstream 
of the square. As will be seen later, an experiment has shown that S increases with 
Reynolds number for R 5 350. Thus, the increase in S with decreasing ,4 is qualita- 
tively consistent with the experimental results if decreases in the numerical diffusion 
are considered as corresponding to  increases in the actual flow Reynolds number. 
Clearly, however, the strong dependence of S on a non-physical, fairly arbitrary 
parameter p rendered this type of differencing scheme unacceptable. The above 
results constitute, however, an excellent example of the effects of numerical diffusion 
on a flow computation. 

The scheme that was finally used for this flow simulation is based on the one- 
dimensional QUICKEST method proposed by Leonard (1  979) for time-dependent 
convection-dominated flows. This scheme utilizes quadratic upwind differencing in 
one dimension in a manner similar to  the QUICK method for two-dimensional steady 
flows (Leonard, Leschziner & McGuirk 1978). I n  the present paper, the one-dimensional 
QUICKEST scheme has been extended to two dimensions. The only stability restriction 
of the QUICKEST method which is relevant to this study is C < 1, where Cis the Courant 
number. This represents a considerable improvement over the stability restriction for 
the weighted upwind-central scheme (C 5 p). 

The spatial differencing employed in the two-dimensional QUICK method will now 
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FIGURE 2. Typical control volume for uniform mesh. 

be described in relation to  the following convection-diffusion equat,ion for the unknown 
quantity 4:  

Figure 2 shows a typical grid point with some of its neighbours in a uniform mesh. 
It is necessary to find the convective flux u$w of the quantity 4 across the west face 
(for instance) of the control volume, given positive values of u and v a t  this face. 
Note that vw must be interpolated, since 2, is defined only at the north and south 
faces of the control volume. The interpolation for 4 is based upon the expansion 

4 = c,+c2~+c,52+c4r+cgr2+c6~rl, ( 5 )  

which is seen to  assume quadratic variations in each direction. The coefficients in ( 5 )  
are evaluated by use of data a t  an upstream-weighted group of grid points. For 
positive u and v, this data consists of q&, q5ww, &, &,, 4sw, and ds. Use of ( 5 )  
along with an integration to  obtain the average value of q5 along the west face yields 
for t’his average value (Leonard et al. 1978) 

4 w  = i ( 4 P  + 4 w )  - S(4P - 24w + 4w7w) + +d4,.w - 24w + 4sw). (6) 

The first term in (6) leads to  the ordinary central-difference formula, while the third 
term does not appear in a one-dimensional quadratic interpolation, i.e. in QUICKEST 

(Leonard 1979). The sign of v turns out to be irrelevant since 4s does not appear in (6) ,  
having disappeared during the integration along the west face. If u, were negative, 
then upstream weighting would yield 

4 w  = H 4 P  + 4w) - Q ( 4 E  - 24P + 4M7) + +d4x - 24P + 4s). (7) 

The diffusive flux across the west face assumes that 

4 P  - 4 w  (g),= Ax ’ 

which leads to the usual O(Ax2) central second-difference formula for diffusion. The 
source term s+ in (4) is approximated by its value a t  the grid point sp. 

The temporal differencing employed in the simulation is based, as previously 
noted, on t’hat of the one-dimensional QUICKEST scheme (Leonard 1979). There are 



480 R. W .  Davis and E .  F .  Moore 

several ways of deriving this type of differencing scheme. Leonard employed con- 
vective integrations in which space replaced time as the integration variable, i.e. 
dx = udt. A simpler way of deriving the QUICKEST scheme which more clearly shows 
the approximations involved is to  replace the time derivatives in a Taylor expansion 
with space derivatives. Consider the following source-free convection-diffusion 
equation in one dimension : 

-+u- a4 84 = r- a24 
at ax ax2 9 

where r and u are constants. Expand qi about time level N to  obtain 

where t = NAt. Then, from (9)) 

(9) 

where, since the spatial finite-difference approximations to  be used contain fourth 
derivatives in their leading truncation errors, the generally small (being multiplied 
by I') fourth- and higher-spatial-derivative terms have been dropped from (1 1).  
Inserting (9) and ( 1  1)  into (10) gives 

a3+ N 
++At3(-u3@)I . (12) 

Spatial discretization about grid point i is accomplished by first fitting a quadratic 
across grid points i + 1, i ,  and i - 1 , and then integrating to obtain the average value 
of $ within the i th mesh cell. This average value is determined a t  time levels N and 
N + 1,  thus yielding r#N and $Iv+l. The difference ( 4 d V + l  - 4 ~ ~ )  becomes 

4 N+1- 4 N = 4 ~ + 1 - 4 ~ + ~ ~ [ ( 4 ~ ~ 1 - 2 4 ~ + l + 4 ~ ~ ~ 1 ) - ( 4 ; y , 1 - 2 4 ~ + 4 ~ 1 ) ] .  (13) 

The last two terms in ( I  3) can be interpreted as 

from (9). Discretization in the manner previously described for QUICK is then applied 
to the spatial derivatives in (12) and (14) to  finally obtain 

$?+I = @ - &c(q5$$l - $El) + (y  + iC2) ($S1 - 24T + $El) 
+C(+-y-+CZ) ( $ ; . + 1 - 3 4 ~ + 3 ~ ~ - 1 - 4 ~ ~ 2 ) ,  (16) 

where C = uAt /hx  and y = I'At/Ax2. Equation (15 )  is third-order accurate both 
temporally and spatially as --f 0.  For small y ,  i t  is stable for C d 1 (Leonard 1979). 

Similarly, in two dimensions either convective integrations or a Taylor-series 
expansion in time can be straightforwardly applied to obtain a finite-difference 
approximation to (4). I n  these derivations, only normal, and not tangential, diffusion 
is considered a t  each control voliime face in figure 2,  Also sc is treated as a constant 
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for each control volume. The two methods of derivation lead to  identical results 
except for the presence on the right-hand side of (16) of some O(At2)  spatial cross- 
derivative terms which appear only when the Taylor expansion is used. With these 
terms omitted for simplicity, the resulting finite-difference equation is 

@+' = $$ + { - Q e  [&(#p -I- 9 ~ )  - i c e ( &  -$PI - (8  -YE- Qci) ($E - 2 4 ~  + &)I 
+ CW[i(9, + 9w) - iCW(9P - 9w) 
- ( 8  - Y z  - QQ:") (9ww - 29w + 9r)l- C,[ i (9P + 9 N )  

- HCn(9, - 9d - (Q - Y1/ - QG) ($N - 2 9 P  + &)I 
+ Qf"P + 9s) - i Q d $ P  - $s) - (Q --I?/ - -m ( 9 P  - 29s + 9ss)l 
+ Y J $ E  - 29P + 9w) + YJ9N - 2 9 P  + 4s )  + SP A t Y .  (16) 

In  (16), the Cs are the Courant numbers (all assumed positive) at the various control- 
volume faces in figure 2 ;  yz = FAt/Ax2 and yU = I'At/Ay2. Note that, because of 
two-dimensional spatial averaging within grid cells (as per (13) in one dimension), 
q5NW, &w, and q5SE do not appear in (16). It is (16), appropriately modified for a 
non-uniform grid, that  is used to approximate the momentum equations (1). Owing 
to the small time steps employed, the effect of the neglected cross-derivatives on the 
numerical results was negligible, although their omission formally reduces the tem- 
poral accuracy of (16) as r-+O to O(At ) .  The spatial accuracy as I'+O remains 
O(Ax3, Ay3) .  Since the computed velocity field at a given time step will probably not 
satisfy the continuity equation (2),  it is necessary to adjust this field. The adjustment 
procedure will be discussed next. 

The velocity divergence for a given control volume is driven approximately to  zero 
by adjusting the control volume pressure pp. This pressure adjustment produces a 
corresponding velocity adjustment, which for the u-component of velocity is deter- 
mined from 

Sue At Su, At 
8pP Ax' 8pP Ax' (17) - = -  - =-- 

where Su and Sp are the velocity and pressure increments. This adjustment process, 
which amounts to  solving a Poisson equation for the pressure, is performed iteratively 
by successive over-relaxation until the sum of the absolute values of the mass residuals 
over all mesh cells is less than e times the inlet mass flow (Hirt et al. 1975). Finally, the 
pressure at the origin is set to zero. 

The boundary conditions used in this simulation will now be described. The up- 
stream undisturbed velocity profile U ( y )  is specified at x = 0 in figure 1, thus deter- 
mining the angle of attack a. The free-stream velocity is specified a t  y = yim for all x. 
The situation a t  the exit from the computational mesh is more complex. Use of 
zero-gradient boundary conditions here causes premature smoothing of the wake. 
Thus, as done previously by Lugt & Haussling (1974) and Mehta & Lavan (1975), the 
computation of local velocities a t  the exit was selected as the best method of allowing 
vortices to  leave the domain with minimal interference. I n  order to reduce extra- 
polations to  a minimum, the differencing of ( 1 )  a t  the exit is accomplished by ignoring 
the diffusion terms and employing first-order upwind differencing on the convective 
terms. For the computation of the u-component of velocity a t  the exit by this method, 
v a n d p  are linearly extrapolated over a distance Ax downstream of their exit locations. 
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r - i  

r - i  

( b )  ( C )  

FIGURE 3. Control volumes near top front corner. 

No extrapolations are required for the calculation of v a t  the exit. Once the exit values 
of u and v are computed from momentum considerations, they must be adjusted so 
as to satisfy continuity. This is accomplished in the manner described previously for 
interior mesh points, the only difference being that the last two u-component velocity 
profiles in the mesh are adjusted during the pressure iterations so as to satisfy global 
continuity. This is done by ensuring that these profiles integrate to give the same mass 
flow as is entering the computational domain. Any errors in overall mass flow are 
corrected by evenly spreading the necessary residual mass flow from y--m to Y + ~ .  

The boundary conditions around the rectangle are simply that surface normal and 
tangential velocities are zero. Surface shear stress is determined by assuming a locally 
quadratic variation in the tangential velocity. Values of the velocity components 
needed a t  any 'phoney' grid points inside the rectangle are obtained from quadratic 
extrapolation. Since the velocities at the corners of the rectangle are undefined, the 
situation in these areas must be treated specially. The problem manifests itself in the 
question of how to calculate the convective fluxing across the control volume half- 
faces shown in figure 3. There are two of these half-faces in figure 3, one for each of the 
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control volumes surrounding the velocities nearest the front corner shown. The con- 
vective fluxing across these half-faces a t  the front corners of the rectangle is accom- 
plished by ( 1 )  assuming an average normal velocity across these half-faces equal to 
that a t  the outer edge of the half-face (i.e. using vp for the normal velocity across the 
u-control volume’s half-face and vice versa), and (2) assuming that the fluxed quantity 
(us and v, in figures 3b, c) satisfies a linear fit a+bx+cy through the nearest three 
non-zero nodal values of the respective velocity component shown in figures 3 (b ,  c ) .  
Since the signs of the velocity components at the front corners do not vary with time, 
no provision need be made for this (e.g. changing the nodal values for the linear fit). 
The situation at the rear corners is different, since the velocities there change direction 
during the shedding cycle. Consequently, the convective fluxing across the rear 
corner half-faces is accomplished in the same manner as for interior cells (quadratic 
upwinding) with the addition of some linear interpolations to obtain values of the 
fluxed quantity a t  the centre of each of the half-faces. Normal velocities across rear 
half-faces are determined in the same manner as for front half-faces. The procedures 
just described a t  the four corners are obviously not the only possible ones. They do, 
however, lead to slightly better results than various other procedures that were tested, 
such as quadratic upwinding at all four corners. Research is clearly needed on the 
numerical treatment of flows near sharp corners. One such effort by Ghia & Davis 
( 1974) employed similarity variables in conjunction with a conformal transformation 
in order to study the steady flow around a semi-infinite rectangular slab. A comparison 
between results obtained by them and some present results will be made subsequently. 

The non-uniform computational meshes employed in this study ranged in size from 
41 x 40 to 61 x 74, with the first number being the number of mesh points in the 
x-direction and the second in the y-direction. The value selected for \y*ml for a = 0 
was 6, larger values having an insignificant effect on vortex street development and 
on quantities such as Strouhal number, lift and drag. The value for xR was 4.5, while 
values of x a t  the exit from the mesh ranged from 15 to 20. The divergence criterion E 

was set a t  2 x values ten times less or five times greater effecting negligible 
changes in the results. The initial conditions for the computations were either a 
uniform flow everywhere (impulsive Start) or the results of a previous calculation, 
often a t  a different Reynolds number. The time step At was generally set a t  0.05 so as to 
maintain the maximum Courant number in the flow a t  less than unity. Computation 
times on the NBS UNIVAC 1108 ranged up to 24 hours for the finest mesh starting 
from a uniform flow everywhere. Generally, nine hours of computation time sufficed 
to obtain constant-Strouhal-number vortex shedding when using results of a previous 
calculation as initial conditions. When starting from a uniform initial flow everywhere, 
vortex shedding would begin spontaneously after a while, with no upstream perturba- 
tion required. 

3. Results and discussion 
Using the previously described numerical method, computations have been carried 

out for flow around various rectangles. The parameters involved are a, R, a, and 
(U(y)/ .  Table 1 shows the combinations of these parameters that were tested. The 
initial configuration was a square a t  zero angle of attack with a uniform upstream 
velocity profile and Reynolds numbers between 100 and 2800. For this configuration, 
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Configuration a R a IU(Y)l 
1 1 100-2800 0 1 
2A 1 250; 1000 5" 1 
2B 1 250; 1000 15' 1 
3 1 250; 1000 0 1 + 0.1oy 
4A 0.6 250; 1000 0 1 
4B 1.7 250; 1000 0 1 

TABLE 1. Computed parameter combinations 

+ 
m x  

A d  

d 

0.16 O F :  

O +  
X 

1 0.1 3 

A 

+ x  
0 a A 

A a + 
+ x d  

+ 
X + 

x x  + + + 

0.1 2 
100 500 1000 

R 

FIGURE 4. Numerical-experimental Strouhal-number comparison for configuration 1. 
Computed: 0,  41 x 40 grid; A ,  51 x 62; 61 x 74. Experimental: x , run 1; +, run 2. 

Strouhal number and average and r.m.s. values of the lift and drag coefficients were 
computed over the aforementioned Reynolds-number range. The Strouhal numbers 
were compared with the results of a wind-tunnel test, which will now be described. 

A 3.175 mm (0.125 in.) square steel rod was mounted in the test section of the 
NBS Low Velocity Airflow Facility (Purtell & Klebanoff 1979), with the rod spanning 
the tunnel horizontally (0.94 m). The rod was normal to the flow in a region of con- 
stant velocity (outside the wall boundary layers), zero streamwise pressure gradient, 
and free-stream turbulence intensity of less than 0.05 yo. The free-stream velocity 
was measured by a Pitot-static tube. A 2.5 pm by 1 mm hot wire was placed parallel 
to the rod at selected positions attained by a traverse and checked by a cathetometer 
from outside the tunnel during testing. The signal from the hot-wire anemometer was 
observed on an oscilloscope and the vortex-shedding frequency estimated. This 
frequency was then more accurately determined by a digital averaging counter. 
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FIQURE 6. Log-log plot of average drag coefficient vs. Reynolds number for configuration 1 

computed on three grids: 0, 41 x 40; A, 51 x 62; m, 61 x 74. 
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FIGURE 7.  Instantaneous lift (CL, 0)  and drag (CD, A )  coefficients for configuration 1 
using 51 x 62 grid. ( a )  R = 250; ( b )  R = 1000. 
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The computed and experimental values of Strouhal number for configuration 1 are 
shown as functions of Reynolds number in figure 4. The experimental values are shown 
for two test runs, thus giving an idea of the experimental uncertainty. The computed 
values were calculated on three non-uniform meshes, 41 x 40, 51 x 62, and 61 x 74, 
with the second one being shown in figure 5. These computed frequencies are based on 
the periodic fluctuations of the following four quantities: (1) the v-component of 
velocity on the centreline just off the rear face of the rectangle, (2) the y-co-ordinate 
of the stagnation point just off the front face of the rectangle, (3) the lift coefficient, 
and (4) the u-component of velocity at  the downstream location where the wind-tunnel 
measurements were made. The fluctuations were allowed to reach a steady state 
before an average frequency was determined over approximately 4 cycles of each of 
these quantities. These four frequencies (generally within 3 % of each other) were then 
averaged to obtain the plotted values. The regularity of the fluctuations with time 
once steady-state vortex-shedding was reached is a function of Reynolds number and 
will be discussed below. It is clear from figure 4 that the three grids give very similar 
results and are in generally good agreement with the experimental resultsfor R < 1000. 
The 61 x 74 grid (with At = 0.025) was used at only two Reynolds numbers because of 
limited computer resources. The other two grids and the experiment show S peaking 
in the neighbourhood of R = 300. For R > :OOO,  the computational and experimental 
results are no longer in qualitative agreement, with the numerical simulation failing 
to  predict the continued decline in S with increasing R. It is noted, for reference, that 
for R = O( lo5) the Strouhal number is about 0.12 (Vickery 1966). 

Also, as discussed previously, quadratic upwinding was tried at  the four corners of 
the square and led to values of S about 7 %  lower than those shown for R < 1000. 
This was clearly less satisfactory in predicting the behaviour of S in this Reynolds- 
number regime. 

against Reynolds number 
for configuration 1 is presented in figure 6, with the computations once again being 
carried out on the three meshes mentioned previously. The plotted drag coefficients 
are based only upon pressure drag, as viscous-drag effects were negligible. As can be 
seen from figure 6, the average drag coefficient increases with Reynolds number, the 
rate of increase being greater with the 51 x 62 grid than with the 41 x 40 grid. For 
R < 1000 the differences among the three grids are less than 7 %. For reference, the 
average drag coefficient for smooth flow at high R [0( lo5)] is about 2.2 (Lee 1975). The 
average lift coefficient for configuration 1 was O( 10-2) or less. 

Figures 7 (a,  b )  present plots of computed instantaneous lift and drag coefficients, 
C ,  and C,, against time for configuration 1 at Reynolds numbers of 250 and 1000 after 
steady-state vortex shedding has been reached. Once again viscous effects are ignored 
in these coefficients, which were computed using the 51 x 62 grid. Although these 
plots (and figures 11 and 13 below) were constructed from data at each time step, the 
symbols are plotted only every ten time steps. The difference in the appearance of 
these two plots is striking, with figure 7 (a )  being a simple sine wave while figure 7 ( b )  
shows the effects of harmonics appearing at the larger Reynolds number. Note that 
one period in the shedding cycle (two vortices shed) remains as the time between 
adjacent peaks in the lift curve regardless of amplitude variations. The appearance of 
the subharmonic in C ,  at R = 1000 signifies small modulations in shedding frequency 
which do not occur at R = 250. The drag, of course, oscillates at  twice the frequency 

A log-log plot of computed average drag coefficient C ,  
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FIGURE 8. Streakline plots for configuration 1 using 61 x 74 grid. 

(a )  R = 250; ( b )  R = 1000. 

of the lift. Root-mean-square values of the lift and drag coefficients will be presented 
later in a summary table for all the tested configurations. It is noted that the behaviour 
of the front-face stagnation point and rear-face centre-line vertical velocity com- 
ponent v is virtually identical to that of C, in figures 7 (a, b ) .  The front-face stagnation 
point traverses the central 6 % of the face at  R = 250 and 20 % at R = 1000. 

Figures 8 (a, b )  are streakline plots of typical vortices for configuration 1 at Reynolds 
numbers of 250 and 1000 utilizing the 61 x 74 grid. The flow visualizers here are 
passive marker particles introduced ahead of the body, a different symbol being used 
for each approaching streakline. There are 14 streaklines with new particles being 
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FIGURE 9. Particle trajectories for configuration 1 using 51 x 62 grid. 
(a) R = 250; (6) R = 1000. 

injected at time intervals of 0.10. At time t + At a given particle is moved a distance 
IqI At in the appropriate direction. The velocity q here is obtained by linear inter- 
polation among the surrounding grid points. This is done at  both time t and time 
t + At and then the two qs are averaged to obtain the particle velocity over the time 
span At. The particles are swept into the vortices behind the body and are shed with 
them, thus providing an excellent means for visualizing the motion of these large 
coherent structures as they move downstream away from the body. It will be seen 
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FIGURE 10. Streakline plot for configuration 2B at R = 1000. 
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FIGURE 11. Instantaneous lift (CL, 0) and drag (GI,, A )  coefficients for 
configuration 2B at R = 1000. 

later that the structures visualized by the particles are in fact regions of concentrated 
vorticity. It can be seen that the vortices in figure 8 (a)  are more regularly shaped and 
less stretched than those in figure 8 (b) .  This is consistent with the differences between 
figures 7 (a, b).  Consistent with the subharmonic in C ,  in figure 7 ( b ) ,  the shapes of the 
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FIGURE 13. Instantaneous lift (CL, 0)  and drag (CD, A )  coefficients for 
configuration 3 at R = 250. 

vortices a t  R = 1000 repeat themselves with a frequency approximately half that of 
the shedding frequency. At both Reynolds numbers, vortices shed from the top 
or bottom of the square are composed primarily of fluid from above or below the 
centre-line respectively. At the higher Reynolds number, the tendency for painvise 
interaction is evident from figure 8 ( b ) .  Apparent in both figures 8 (a) and 8 ( b )  is the 
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FIGURE 14. Streakline plot for configuration 4A at R = 1000. 

formation of a thin contact line between successive vortices, where fluid entrained 
from one side of the centre-line meets fluid from the other side in a very thin region. The 
widening of the wake can be seen as the spreading of these contact lines. 

Trajectories of four individual particles at each of these Reynolds numbers are 
shown in figures 9 (a, b )  as computed on the 51 x 62 mesh. The time difference between 
consecutive particle locations in a given trajectory is 4At, which means that particle 
velocity is directly proportional to the spacing along the trajectory. The degree of 
transverse transport is apparent from these trajectories, as particles are carried dis- 
tances on the order of the transverse scale of the vortices in the y-direction. These 
figures also suggest a wide range of residence times within the computational domain 
for various particles. Particles entering close to the centre-line are often bound for 
long periods within the early wake region while vortices are forming. 

Figure 10 shows the flow around the square for a = 15' (configuration 2B) at 
R = 1000. The 51 x 62 mesh was used here and, unless otherwise stated, will be 
employed throughout the remainder of this paper. A value of y+03 = 8.5 was used for 
the computation of the flow in figure 10. For a = 5' and 15' the values of S and 
Ciav  for R = 250 and 1000 are equal to or greater than their values a t  zero angle of 
attack. Also a negative average lift force appears at  those two attack angles. This can 
be seen for a = 15' from figure 11, which presents the instantaneous lift and drag 
coefficients for the flow in figure 10. Note that these plots are much more regular than 
those for a = 0 in figure 7 ( b ) .  More details appear later in table 2. 

Figure 12 visualizes the flow-field for R = 250 for configuration 3, which has a 
shear flow ahead of the square. When compared with figure 8 (a), the effect of the free- 
stream shearing on the vortices is clear. The effect of this shearing on s, C,,, and 
C1iav is small, as will be seen later in table 2. Figure 13, which presents C ,  and C ,  
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FIGURE 15. Flow visualization of vortex-shedding development; configuration 4B at R = 1000. 
(a)  t = 12; (b )  33.5; (c )  37.5; ( d )  41-5; ( e )  43-5; (f) 46.5; (9)  53.5; (h) 58.6; ( i )  96.6. 
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FIGURE 15(d, e). For legend see p. 493. 
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6 

for this case, shows that a subharmonic has entered into the fluctuating drag coefficient 
(compare with figure 7 a ) .  

Flow around a rectangle with a = 0.6 (configuration 4A) a t  R = 1000 is illustrated 
in figure 14. The Strouhal numbers and average drag coefficients are higher for this 
shape than for the square, as will be seen in table 2. The instantaneous lift and drag 
coefficients are pure sinusoids (as in figure 7 a )  a t  both R = 250 and R = 1000, which 
is quite different from the situation with the square (figure 7) .  

The case of a rectangle with a = 1.7 (configuration 4B) will be described in some 
detail. The computation of this flow a t  R = 1000 was begun from an impulsive start. 
The initiation and subsequent development of the vortex-shedding process is illus- 
trated in figure 15. The shedding begins with the bottom recirculation zone moving 
upwards and splitting the top recirculation zone into two parts. The rear part of the 
top recirculation zone becomes the first vortex to  be shed, while the front part of this 
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FIGURE 16. Instantaneous lift (a) and drag (b) coefficients during development of 
vortex shedding; configuration 4B at R = 1000. 
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FIGURE 17. Isovorticity plots during development of vortex shedding; 
configuration 4B at R = 1000. (a)  t = 12; ( b )  41.5; ( c )  46.5; ( d )  96.6. 
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FIGURE 18. Isovorticity plots near rectangle during development of vortex shedding; 
configuration 4B at R = 1000. (a) t = 41.5; ( b )  46.5; ( c )  96.6. 
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FIGURE 19. Overlay of streakline plot on isovorticity plot after development of 
vortex shedding; configuration 4B a t  R = 1000. 
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0 

FIGURE 20. Surface-pressure coefficient and vorticity distributions for configuration 4B 
at R = 1000 (positive values toward inside of rectangle). 

This is probably related to the regular shape of the steady-state vortices in figure 15, 
which appear like the vortices shed off the square at  much lower Reynolds numbers. 
In fact, the vortices for configuration 4B appear virtually identical at R = 1000 and 
R = 250. Finally, i t  is noted that, unlike this rectangle, the square exhibits a quick 
smooth build-up to steady-state vortex shedding without the rather violent early 
behaviour seen in figure 16 (Davis & Moore 1981). 

Isovorticity plots are presented in figure 17 for four of the instantaneous flowfields 
illustrated in figure 15. Figure 18 shows close-ups around the rectangle of the flows in 
figures 17 (b, c, d ). It is seen from these figures that the vorticity, as expected, is con- 
fined to the wake region. The peaks in vorticity occur inside the vortices, thus providing 
another means of visualizing them. To demonstrate that figures 15, 17, and 18 are in 
fact visualizing the same coherent structures, figure 19 presents an overlay of the final 
of the figure 15 streakline plots on figure 17 ( d ) .  It is clear from figure 19 that the two 
methods of flow visualization are producing the same results. The entrainment of 
virtually irrotational fluid into the vortices is clear from figure 19. 
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FIGURE 20(b). For legend see p. 502. 

Configuration R 

1 250 
1000 

2A 250 
1000 

2B 250 
1000 

3 250 
1000 

4A 250 
1000 

4B 250 
1000 

s 
0.165 
0.142 
0.165 
0.164 
0.167 
0.177 
0.161 
0.141 
0.193 
0.202 
0.170 
0.186 

CD BY C D  rme 

1.77 0.03 
2.05 0.18 
1.81 0.07 
2.08 0.19 
2.25 0.26 
2.67 0.48 
1-77 0-05 
2.01 0.18 
2.21 0.08 
2.58 0.15 
1.55 0.01 
1.82 0.07 

- 
- 0.20 
- 0.26 
- 0.06 
- 0.20 
- 

CLrms 

0.36 
0.93 
0.42 
0.80 
0.71 
0.94 
0.41 
0.88 
0.56 
0.87 
0.22 
0.34 

TABLE 2. Summary chart of results (51 x 62 grid) 
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FIGURE 21. Extended downstreEtm flow visualization for configuration 1 at R = 1000. 

The situation illustrated in figures 15 (a )  and 17  (a) prior to the breakup of the 
symmetric wake into vortices represents an essentially steady flow near the front 
corners. The flow near these corners is thus very similar to that mentioned previously 
of Ghia & Davis (1974) for Aow past a semi-infinite rectangular slab. They found that, 
in the Reynolds-number range of approximately 250-1200, t,he flow negotiated the 
sharp corner without separating. Separation in fact occurred at  a distance of about 
0.2 downstream of the corner. Similarly, in the present study, the surface vorticity 
changes sign, indicating separation, at about this same location during the quasi- 
steady phase of the computation prior to the onset of vortex shedding. 

Distributions of surface-pressure coefficient and vorticity are presented in figure 20 
for configuration 4B at R = 1000. Figures 20(a, b )  occur a quarter shedding cycle 
apart after the shedding cycle has steadied out. A rough idea of the vortex structure 
behind the body at each of these times is provided by the particles marking the outer 
edge of this structure in the two pressure plots. The lift, drag, and resultant force C ,  
vectors are also displayed in the pressure coefficient plots. 

Table 2 is a summary chart which presents Strouhal numbers and average and 
r.1n.s. values of lift and drag for the various configurations at Reynolds numbers of 
250 and 1000. It is seen that average drag increases with angle of attack and decreases 
as the rectangle dimension a increases. A non-zero average lift appears only at non-zero 
angles of attack. Root-mean-square values of lift and drag increase with Reynolds 
number. 

4. Concluding remarks 
The computer simulation described in this paper was carried out on a UNIVAC 1108 

with a maximum storage capacity of about 100 K words. From comparison with the 
experimental Strouhal number data that was obtained, the results appear to be 
reasonably reliable up to  Reynolds numbers around 1000. Use of a more modern 
computer would have allowed considerably finer meshes to have been used, i.e. up to 
20 K grid points instead of 4 K. This could well have extended the range of reliability. 
Of course, more extcrisive experimentation, including force measurements, would be 
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helpful in assessing accuracy. It may well, however, require fully three-dimensional 
computer simulations to achieve really close comparisons with experimental data. 

The tracking of the marker particles through this highly unsteady flow may have 
applications in the area of mixing in chemically reacting flows. The duration of time a 
particle remains in a given region of the flow will affect the net reaction rate. Thin 
contact regions between two reagents, easily visualized by particles, promote higher 
reaction rates. Certainly the particles should prove very useful in the study of the 
motion of large coherent structures generated by obstacles or mixing layers. An 
example of this is provided by figure 2 1, which portrays an enlarged downstream region 
for configuration 1 at R = 1000. Quite a variety of structures is evident here. The 
addition of turbulence models to a code such as this may prove helpful in studying 
these structures at extremely high Reynolds numbers. Another promising approach 
at high Reynolds numbers is the discrete-vortex method. Comparisons among results 
at intermediate Reynolds numbers obtained with both this approach and with 
Navier-Stokes solvers would be very interesting and useful. 

The authors are grateful to Drs S. Deutsch and L. P. Purtell for performing the 
wind-tunnel test described herein. They also acknowledge helpful discussions wit,h 
Dr J. M. McMichael. 
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